Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Nat Biotechnol ; 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38168995

Tandem repeat (TR) variation is associated with gene expression changes and numerous rare monogenic diseases. Although long-read sequencing provides accurate full-length sequences and methylation of TRs, there is still a need for computational methods to profile TRs across the genome. Here we introduce the Tandem Repeat Genotyping Tool (TRGT) and an accompanying TR database. TRGT determines the consensus sequences and methylation levels of specified TRs from PacBio HiFi sequencing data. It also reports reads that support each repeat allele. These reads can be subsequently visualized with a companion TR visualization tool. Assessing 937,122 TRs, TRGT showed a Mendelian concordance of 98.38%, allowing a single repeat unit difference. In six samples with known repeat expansions, TRGT detected all expansions while also identifying methylation signals and mosaicism and providing finer repeat length resolution than existing methods. Additionally, we released a database with allele sequences and methylation levels for 937,122 TRs across 100 genomes.

2.
Ann Neurol ; 95(3): 558-575, 2024 Mar.
Article En | MEDLINE | ID: mdl-38069470

OBJECTIVE: Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset progressive genetic neurodegenerative disorder that occurs in FMR1 premutation carriers. The temporal, spatial, and cell-type specific patterns of neurodegeneration in the FXTAS brain remain incompletely characterized. Intranuclear inclusion bodies are the neuropathological hallmark of FXTAS, which are largest and occur most frequently in astrocytes, glial cells that maintain brain homeostasis. Here, we characterized neuropathological alterations in astrocytes in multiple regions of the FXTAS brain. METHODS: Striatal and cerebellar sections from FXTAS cases (n = 12) and controls (n = 12) were stained for the astrocyte markers glial fibrillary acidic protein (GFAP) and aldehyde dehydrogenase 1L1 (ALDH1L1) using immunohistochemistry. Reactive astrogliosis severity, the prevalence of GFAP+ fragments, and astrocyte density were scored. Double label immunofluorescence was utilized to detect co-localization of GFAP and cleaved caspase-3. RESULTS: FXTAS cases showed widespread reactive gliosis in both grey and white matter. GFAP staining also revealed remarkably severe astrocyte pathology in FXTAS white matter - characterized by a significant and visible reduction in astrocyte density (-38.7% in striatum and - 32.2% in cerebellum) and the widespread presence of GFAP+ fragments reminiscent of apoptotic bodies. White matter specific reductions in astrocyte density were confirmed with ALDH1L1 staining. GFAP+ astrocytes and fragments in white matter were positive for cleaved caspase-3, suggesting that apoptosis-mediated degeneration is responsible for reduced astrocyte counts. INTERPRETATION: We have established that FXTAS neuropathology includes robust degeneration of astrocytes, which is specific to white matter. Because astrocytes are essential for maintaining homeostasis within the central nervous system, a loss of astrocytes likely further exacerbates neuropathological progression of other cell types in the FXTAS brain. ANN NEUROL 2024;95:558-575.


Fragile X Syndrome , White Matter , Humans , Astrocytes/metabolism , Tremor/genetics , Gliosis/pathology , Caspase 3/metabolism , White Matter/pathology , Fragile X Syndrome/diagnosis , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Ataxia/genetics , Fragile X Mental Retardation Protein/genetics
3.
Neuron ; 111(19): 3028-3040.e6, 2023 10 04.
Article En | MEDLINE | ID: mdl-37473758

Dysregulation of protein synthesis is one of the key mechanisms underlying autism spectrum disorder (ASD). However, the role of a major pathway controlling protein synthesis, the integrated stress response (ISR), in ASD remains poorly understood. Here, we demonstrate that the main arm of the ISR, eIF2α phosphorylation (p-eIF2α), is suppressed in excitatory, but not inhibitory, neurons in a mouse model of fragile X syndrome (FXS; Fmr1-/y). We further show that the decrease in p-eIF2α is mediated via activation of mTORC1. Genetic reduction of p-eIF2α only in excitatory neurons is sufficient to increase general protein synthesis and cause autism-like behavior. In Fmr1-/y mice, restoration of p-eIF2α solely in excitatory neurons reverses elevated protein synthesis and rescues autism-related phenotypes. Thus, we reveal a previously unknown causal relationship between excitatory neuron-specific translational control via the ISR pathway, general protein synthesis, and core phenotypes reminiscent of autism in a mouse model of FXS.


Autism Spectrum Disorder , Autistic Disorder , Fragile X Syndrome , Animals , Mice , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Fragile X Mental Retardation Protein/genetics , Neurons/metabolism , Phenotype , Mice, Knockout , Disease Models, Animal
4.
Autism ; 27(6): 1730-1745, 2023 08.
Article En | MEDLINE | ID: mdl-36935610

LAY ABSTRACT: Autism spectrum disorder is a neurodevelopmental condition characterized by deficits in sociability and communication and the presence of repetitive behaviors. How specific pathological alterations of the brain contribute to the clinical profile of autism spectrum disorder remains unknown. We previously found that a specific type of inhibitory interneuron is reduced in number in the autism spectrum disorder prefrontal cortex. Here, we assessed the relationship between interneuron reduction and autism spectrum disorder symptom severity. We collected clinical records from autism spectrum disorder (n = 20) and assessed the relationship between the severity of symptoms and interneuron number. We found that the reduced number of inhibitory interneurons that we previously reported is linked to specific symptoms of autism spectrum disorder, particularly stereotypic movements and intellectual impairments.


Autism Spectrum Disorder , Autistic Disorder , Humans , Autism Spectrum Disorder/pathology , Stereotyped Behavior , Interneurons/pathology , Brain
5.
Neurobiol Learn Mem ; 181: 107427, 2021 05.
Article En | MEDLINE | ID: mdl-33798696

The perirhinal cortex (PER) receives multimodal and unimodal sensory information from all modalities. In addition, the PER is anatomically connected with several brain regions that support fear learning. Several studies suggest that the PER is involved in fear conditioning to discontinuous auditory cues but not to continuous auditory cues. To date, studies examining the role of the PER in fear conditioning has largely focused on auditory and contextual stimuli. The present study assessed whether the role of the PER in fear conditioning would extend to visual modalities. Rodents were randomly assigned to one of four conditioned stimuli, which consisted of either a tone or a light stimulus that was either continuous or discontinuous. Pre-training excitotoxic lesions to the PER significantly reduced freezing to auditory and visual cues during the acquisition phase regardless of stimulus continuity. During subsequent testing, perirhinal lesions produced significant decreases in freezing levels to both continuous and discontinuous tones but not to either of the light CS groups. These results suggest that the PER is involved in the acquisition of fear across multiple cue modalities. However, the PER may have a more limited role in the retrieval of the fear memory dependent upon the cue modality.


Acoustic Stimulation , Conditioning, Classical/physiology , Cues , Fear , Perirhinal Cortex/physiology , Photic Stimulation , Animals , Male , Perirhinal Cortex/injuries , Perirhinal Cortex/pathology , Rats , Rats, Sprague-Dawley
...